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Genomics Approaches to Drug Discovery
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Abstract

New approaches to drug discovery have come about in recent years as a result of important advances in

genomics and bioinformatics. The availability of genome-scale sequence data, the development of new tools for high-
throughput gene expression monitoring, and improvements in the ability to analyze large data sets have revolutionized
the field. In this article, we discuss three applications of genomics data in the drug discovery process: target discovery,
prodrug strategies, and vaccine development. J. Cell. Biochem. Suppl 37: 110-119, 2001. © 2002 Wiley-Liss, Inc.
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Recent advances in genomics and bioinfor-
matics have transformed biology from a science
of small-scale experiments to one of high-
throughput processes, large data sets and
sophisticated analytical methods. As a conse-
quence, new possibilities have arisen for
the identification of therapeutic targets and
the development of small molecule drugs. These
changes have been driven largely by genome
sequencing projects and new technologies for
high-throughput measurements of gene expres-
sion. The sequencing projects, particularly the
Human Genome Project [International Human
Genome Sequencing Consortium, 2001; Venter,
2001], have put into the hands of researchers
the complete sequences of tens of thousands of
genes, along with the challenge of sorting out
which represent opportunities for therapeutic
intervention. To help meet this challenge, gene
expression technologies, such as those based on
microarrays [Lockhart et al., 1996; Brown and
Botstein, 1999], have provided a powerful
means of using genome sequence data for the
identification of disease-associated genes.

The power of array-based methods lies in
their ability to rapidly dissect the transcrip-
tional differences between normal and diseased
cells. This capability has important implica-
tions throughout the drug discovery process.
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At the early stages, expression profiling of
normal and diseased tissues contributes to
target identification. At later stages, expression
data can be used to optimize lead compounds
and to evaluate toxic effects [Gore et al., 2000].
In addition, expression profiling can lead to the
discovery of diagnostic, prognostic, and surro-
gate markers [Golub et al., 1999]. In this article,
we will provide an overview of the genomic and
bioinformatic processes involved in large-scale
gene expression studies, and focus on three
specific applications of these methods, each with
adifferent approach to the development of novel
therapeutic treatments (Table I).

Genomics Process

Successful use of expression profiling in drug
discovery depends on the incorporation of a set
of wet-lab and analytical steps into an inte-
grated process, such as the one outlined in
Figure 1. The process starts with the disease of
interest and collection of relevant tissues. The
number of tissues required for such a study can
range from several dozen to several hundred,
and must include a sufficient number of each
tissue type to allow for meaningful compari-
sons. In many cases, the situation will be more
complex than a simple division of tissues into
normal and diseased categories. For example, in
a study of diabetes, tissues may be collected
from normal, insulin-resistant, and diabetic
individuals, with samples collected from each
individual under multiple experimental condi-
tions, such as before and after insulin treat-
ment. Moreover, in addition to these tissues,
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TABLE 1. Selected Applications of Expression Profiling to Drug Discovery

Application

Basic elements of approach

Characteristics of identified gene target

Target identification

Mining of expression data and clinical parameters

Causative role in disease (Targetable function)

for identification of tractable drug targets

Prodrug strategies

Vaccine development

Analysis of expression data to identify enzymatic
activities selectively associated with diseased cells

Use of expression data and epitope scanning
algorithms to identify disease-specific T-cell epitopes

Selective expression in disease (Exploitable
function)

Selective expression in disease (No functional
requirement)

there also must be access to a wide range of
samples from other organs, in order to assess
the overall tissue distribution of expression for
genes of interest. For all tissue samples col-
lected, clinical parameters must be collected
and stored in a tissue database for later mining
with the expression data, as discussed below.
In the next step, tissue samples are subjected
to expression profiling using microarrays. With
current profiling methods using oligonucleotide
arrays or spotted cDNA arrays, this step can
provide expression data for most of the genes in
the human genome. Analysis of this data, using
an integrated set of databases and analytical
tools (Fig. 2), leads to a preliminary set of
disease-associated genes. When sufficiently
large numbers of tissues have been profiled,
clustering algorithms [Eisen et al., 1998] can be
applied to group tissue samples based on their

Disease

gene expression patterns. In many cases, most
of the samples will cluster clearly into normal or
disease branches of the dendrogram. Outliers
may represent suspect tissues, such as very
early-stage tumor tissue or presumed normal
tissue that is in fact contaminated with tumor
cells. The analysis of expression patterns may
be improved by removing such tissues and
concentrating on those that are more represen-
tative of normal or diseased.

In most cases, analysis of expression data
must be followed up for interesting genes with
additional experimental studies for confirma-
tion. The most sensitive confirmation method
uses quantitative RT-PCR [Heid et al., 1996].
This technique has the advantage that it can be
rapidly applied not only to the original set of
tissues, but also to a much broader range of
tissues and tissue types. This process, which we

Sample preparation

l Tissue acquisition

Gene expression microarrays

Expression data

Experimental confirmation
Single-target expression profiling

l Data analysis

Disease-
associated
genes

Antigenic

Epitope scanning peptides for

Functional

l Literature/database annotation

Functional
characterization

Putative causative role in disease
Tractable

v

vaccine
development

Bioinformatic analysis c
genomics experiments

l Exploitable enzymatic activity

Drug targets

Enzymes for

A prodrug
processing

Fig. 1. Workflow for drug discovery projects based on gene expression profiling. Three specific
applications of expression data are shown: (A) target identification; (B) identification of enzymes for
prodrug processing; and (C) identification of T-cell epitopes for vaccine development. See text for details.
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Fig. 2. Process for analysis of gene expression data. Software tools and information (in italics) are
indicated for each step. The dotted arrow indicates a potentially ititerative step. The software tools shown
are examples; others with the same functionality can be substituted.

refer to as single-target expression profiling
(STEP), not only serves as a confirmation step
for the array data, but also reveals the broader
tissue distribution of expression. This informa-
tion is crucial for all of the applications dis-
cussed here, since detection of high expression
in the diseased tissue and low expression else-
where is the underlying goal.

A) 1] 2

At this point in the process, different avenues
can be pursued depending on the goal. We will
focus here on three ways in which a set of
disease-associated genes can be used to develop
novel therapeutics. In the first application, the
goal is identification of new protein targets with
causative roles in disease. In the second, the
objective is discovery of enzymatic activities

One classification variable, two categories (paired, unpaired)
Parametric; ¢ - test, paired t - test

Nonparametric: Wilcoxon-Mann-Whitney, Wilcoxon’s signed-rank

1,2122) ... | n2

i,m|2,m| ... |nm

One classification variable, n categories
Parametric: One-Way ANOVA
Nonparametric: Kruskal-Wallis k-sample test

Two classification variables, n x m categories
Multiway ANOVA

D) More Complex Designs

* Generalized ANOVA

* Continuous variables (ANCOVA)

* Multiple random variables

* Multiple response variables(multivariate statistics)

Fig. 3. Statistical models used in the analysis of gene expression data.
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Fig. 4. Correlation of expression data with clinical parameters.
The expression levels of metallothionein 1F in skeletal muscle
samples (A) before and (B) after insulin treatment were deter-
mined using Affymetrix GeneChip™ arrays. A clear correlation
(P<0.001) is observed between glucose disposal rate/lean body
mass (GDR/LBM) (left panels); however, after accounting for
variation in clinical and demographic parameters, the GDR/
LBM effect is no longer significant (P < 0.28). In this case, the

selectively expressed in diseased tissue that can
serve as the basis for prodrug development. The
third application identifies proteins expressed
specifically in diseased tissue, with or without
known function and with or without causative
roles in the disorder, as a step toward vaccine
development.

Target Identification

The appropriate analytical approach for
identification of potential drug targets depends
on the nature of the disease and the study
design. In the simplest case, individual tissue
samples can be considered as either normal or
diseased (given their respective origins), with-
out consideration of additional clinical para-
meters. In such a case, the analysis can be
relatively straightforward, involving a compar-
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loss of significance comes from accounting first for variation in
patient age (right panels). In both cases, expression data were
analyzed by ANCOVA by fitting a model that included GDR/
LBM, insulin treatment, and their interactions as fixed effects.
The full analysis also included patient age, sex, ethnicity, body
mass index, percent body fat, waist-to-hip ratio, and triglyceride
levels as fixed effects or covariates, as appropriate. Models were
fit using SAS procedure GLM [SAS Institute, 1988].

ison of the set of diseased tissues with the
normal samples to identify genes that show
significant differences in expression level
(using, e.g., a t-test or paired ¢-test for para-
metric analysis, or a Wilcoxon’s signed-rank for
nonparametric analysis; see Fig. 3). In most
cases, the emphasis will be on genes that are up-
regulated in diseased tissues, since drug devel-
opment efforts can then focus on inhibiting the
activity of the corresponding protein.

In other cases, however, the analysis can be
considerably more complicated, requiring the
use of more sophisticated statistical methods,
such as analysis of variance (ANOVA) and ana-
lysis of covariance (ANCOVA), to incorporate
clinical variables as well as expression data into
the analysis. A diabetes study provides an
example of this type of situation. Diabetes is
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TABLE II. Genes with Significant Correlations to Demographic Variables
Effect  Affymetrix ID Chromosome Gene Symbol Title Refseq ID
Sex 34477 _at Yqll UTY Ubiquitously transcribed NM_007125
tetratricopeptide repeat gene
37583_at Yql1 SMCY SMC (mouse) homolog NM_004653
38355_at Yql1 DBY DEAD/H (Asp-Glu-Ala-Asp/His) NM_004660
box polypeptide
41214 at Yp1l.3 RPS4Y Ribosomal protein S4, Y-linked NM_001008
34842 at 15q12 SNRPN Small nuclear ribonucleoprotein NM_003097
polypeptide
38446 _at X NR1I3 Nuclear receptor subfamily 1, NM_005122
group I, member 3
45324 at X NR1I3 Nuclear receptor subfamily 1, NM_005122
group I, member 3
47940_at 16q13 MTI1E Metallothionein 1E (functional)
Age 31622 f at 16q13 MT1F Metallothionein 1F (functional)
31791 _at 3q27-q29 TP63 Tumor protein 63 kDa NM_003722
31794 at 10cen-g26.11 NT5B 5'-nucleotidase (purine), NM_012229
cytosolic type
37592_at 5q13.3 CKMT?2 Creatine kinase, mitochondrial 2 NM_001825
34811 _at ATP5G3 ATP synthase NM_001689
37027 _at 11q12-q13 AHNAK AHNAK nucleoprotein
(desmoyokin)
Ethnicity 34499 at 11q13-q14 ACTN3 Actinin, alpha 3 NM_001104
36736_f at Tp21-pl5 PSPH Phosphoserine phosphatase NM_004577
37208 _at 7qll.2 PSPHL Phosphoserine phosphatase-like NM_003832
37209 g at 7q11.2 PSPHL Phosphoserine phosphatase-like NM_003832
36587_at 19pter-q12 EEF2 Eukaryotic translation NM_001961
elongation factor 2
36595_s at 15q11.2 GATM Glycine amidinotransferase NM_001482
38833_at
1728 _at 10p13 BMI1 Murine leukemia viral (bmi-1) NM_005180
oncogene homolog
674 g at 14924 MTHFD1 Methylenetetrahydrofolate NM_005956
dehydrogenase
45546_at R33729_1 Hypothetical protein R33729 1
55022_at SES2 Sestrin 2 NM_031459

not a condition that can be simplified reasonably
to a two-state model; rather, it involves a
complex interplay of many continuous vari-
ables. The relationship of changes in gene exp-
ression to changes in any of those clinical
variables is complicated to determine, and
misleading results can be obtained if the data
is not analyzed properly. For example, Figure 4
shows the results of an expression profiling
study we have performed using skeletal muscle
from individuals exhibiting clinical measure-
ments, ranging throughout the spectrum from
normal to insulin-resistant to diabetic. Samples
were obtained from each individual both before
and after insulin treatment using a euglycemic/
hyperinsulinemic clamp. The graphs on the left
show the results of a simple analysis, designed
to detect genes showing significant correlation
between expression level and glucose disposal
rate adjusted for lean body mass (GDR/LBM), a
variable that reflects insulin sensitivity. In this
example, we show the results for metallothio-
nein 1F, a gene that would likely have been
found interesting under the simple model, since

it shows a clear, negative correlation between
GDR/LBM and expression level. However, the
results are no longer statistically significant
once variation in clinical and demographic
parameters are taken into account. As shown
in the right panels, the loss of significance can be
attributed to variation in patient age. Similar
analysis identifies other genes correlated with
demographic variables (Table II). Analyzing the
data using all the available patient information
leads to a more relevant set of disease-asso-
ciated genes.

Ultimately, the goal of target identification is
a set of genes that are not just associated with
the disease but that play a causative role.
Consequently, functional information is almost
always crucial. In some cases, there may be
sufficient literature annotation for a gene of
interest that no further functional studies are
warranted. However, in many cases, the func-
tion of a gene will be unknown, or its role in the
disease poorly understood. In these instances, a
variety of experimental and analytical tools can
be applied. Bioinformatic analysis of the gene
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TABLE III. Known Genes Deregulated in Colon Cancer

Pathways

Enzyme classes

Protein functions

17 Differentiation/proliferation 8 Kinases
15 Protein cleavage/degradation

14 Transcriptional regulation

11 Immunity/inflammation

10 Phosphorylation/dephosphorylation
6 Cell cycle

4 DNA replication

4 Apoptosis

4 Secretion and trafficking

3 Lipid modification

3 Mitosis and meiosis

3 Wound healing

14 Other pathways (< 3 each)

4 Metalloproteases

2 Phosphatases

3 Serine proteases

2 Ubiquitin ligases

2 Carboxylic ester hydrolases
13 Other enzymes (1 each)

32 Organellar structure

29 Extracellular matrix

16 Integral membrane proteins
14 Transcription factors

7 Cytoskeleton

6 Adhesion

5 Peripheral membrane

6 Non-receptor kinases

4 Growth factors

4 Metalloproteases

4 DNA synthesis/modification
3 Serine proteases

3 Protease inhibitors

3 Chemokines/cytokines

3 G-protein signalling

17 Other functions (< 3 each)

sequence provides clues to function, member-
ship in a structural class, and cellular localiza-
tion. Protein-protein interaction screens using
two-hybrid methods [Uetz et al., 2000] place
unknown genes into functional pathways.
Assays based on down-regulating genes of

capecitabine
(N4-pentyloxycarbonyl-
5'-deaxy-5-fluorocytidine)

carboxylesterase
5-DFCR
(5'-deoxy-5-fluorocytidine)
cytidine deaminase
5-DFUR
(5'-deoxy-5-fluorouridine)

high level of enzyme in

thymidine phosphorylase
tummor increases efficacy Y PSR

5-FU

active form | 5 Suorouracil)

low level of enzyme in

A : dihydropyrimidine dehydrogenase
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Fig. 5. Enzymatic conversion of Xeloda to active (cytotoxic)
and inactive (non-toxic) metabolites. Many tumors show high
levels of thymidine phosphorylase activity and low levels of
dihydropyrimidine dehydrogenase activity; this combination
leads to higher concentrations of 5-FU in tumor tissue than in
normal tissue.

interest reveal phenotypic effects of inhibiting
activity. Many of these types of experiments are
amenable to automated methods and thus can
be simultaneously applied to a number of priori-
tized candidate target genes.

Prodrug Development

Another application of expression data is
identification of enzymatic activities that are
up-regulated in diseased tissues and that can be
recruited for activation of prodrug molecules.
A typical expression profiling experiment will
identify a large number of known genes whose
expression is altered in the disease. Table 3 lists
pathways, enzyme classes, and protein func-
tions of 145 known genes identified in a colon
cancer tissue profiling study at Roche. As part of

| Gena/protein sequence DB

DA array- basod mathods

1 -~ "
{ Disease-related protein DBJ

Epiope-predction madals

Candidate
epitocpe DB

T-call assays
Vagccinoma

Clinical trials

Therapies

Fig. 6. Epitope prediction models can serve as a filtering
tool to create disease-specific candidate epitope databases.
This scheme shows how such a model can be applied to
reduce significantly the size of the peptide repertoire to be tested
for T-cell recognition, thus having an important impact on the
amount of laboratory work leading to vaccine design and drug
discovery.
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a prodrug development strategy, such data can
be used to identify enzymes with appropriate
activities. An example of such a prodrug is
capecitabine (Xeloda®™), currently used in treat-
ment of metastatic breast and colorectal cancer
[Blum, 2001]. Capecitabine itself is inactive;
however, enzymatic conversion results in the
formation of 5-fluorouracil, an active cytotoxic
agent (Fig. 5). The enzyme that catalyzes the

experimental work

peptide side
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Fig. 7. The quantitative matrix-based epitope prediction
process. The flow chart illustrates the basic steps required to
create (left) and utilize (right) quantitative matrices for linear
epitope prediction, starting from the experimental measurement
of all amino acid side chain effects at all peptide positions of
HLA-II binding peptides, and resulting in a score value assigned
to each peptide frame (PF) contained in the analyzed protein
sequence. This score is then compared to the score distribution,

final step in the conversion to the active form,
thymidine phosphorylase, is significantly more
active in tumor cells than in normal cells. In
addition, dihydropyrimidine dehydrogenase,
which converts 5-fluorouracil to an inactive
metabolite, is less active in many tumors
[Ishikawa et al., 1998]. Thus the prodrug is
preferentially activated in tumor tissue, leading
to greater anti-tumor efficacy and lower general
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calculated for each matrix, of all the PF contained in a
representative natural peptide sequence database. If the score
of the analyzed PF is equal to or higher than the score values
belonging to the percentage threshold value initially selected by
the user (1% in this diagram), the output of the algorithm is the
prediction of peptides containing such PF as candidate HLA-II
epitopes.
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toxicity. By analyzing expression profiling data
with such applications in mind, other prodrug
approaches will be revealed.

Vaccine Development

The final application of expression data invol-
ves identification of potential peptide sequences
that can be used in the development of epitope-
based vaccines. The availability of genomic-
scale sequence information, coupled with gen-
ome-wide expression monitoring tools, has
dramatically increased the number of possible
disease-specific antigens. Because of the scale of
sequence data involved, experimental ap-
proaches to identifying T-cell epitopes within
these antigens, such as the synthesis and assay
of overlapping peptides from proteins of inter-

A
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est, is not feasible. However, computer models
capable of simulating and predicting the biolo-
gical process of antigen presentation can be
used to minimize the number sequences of
interest. With a greatly reduced number of
experiments, a systematic scanning for candi-
date T-cell epitopes is possible (Fig. 6).
Advances in understanding antigen presen-
tation at the molecular level have accelerated
the development of computer models capable of
predicting T-cell epitopes [Hammer et al., 1997].
Although some of the molecular aspects of
antigen presentation are insufficiently defined
to be of value for epitope prediction models,
others, such as the interaction of peptide frag-
ments with HLA models, have been character-
ized thoroughly. As a consequence, most of the

100 100
80 80
% predicted 60 60 O HLA non-binding repertoire
peptides 40 40 H HLA binding repertoire
20 20
0 0
1 3 5 7 9 3 5 7 9
threshold (%) threshold (%)
B. number of peptide frames
g &
o 8 S g
g8¢S¢gs
8228202
from all genes on microarrays
from genes up-regulated in cancer
predicted candidate T-cell epitopes
Fig. 8. Predictive power of HLA-DR virtual matrices. epitope identification was thus reduced from ~19,000 (number

A: The binding of hundreds of randomly selected natural
peptide sequences was experimentally tested, to generate a
repertoire of HLA-DR binding and non-binding peptides.
Analysis by the matrix-based prediction model of this repertoire
showed that, at stringent threshold levels, most of the binding
peptides were indeed predicted as HLA-DR ligands (black bars),
while only a low percentage of the non-binders (white bars) was
predicted. The data for two HLA-DR alleles are shown. B: In this
example, microarrays were used to identify gene transcripts up-
regulated in tissue samples derived from colon cancer patients.
The initial number of protein sequences to be screened for

of gene sequences and contigs represented on the DNA
microarrays used for this analysis) to 34 gene products found
up-regulated in at least 50% of the primary colon cancer tissues
analyzed (middle bar). Analysis of this set of protein sequences
using the HLA-II virtual matrix-based algorithm TEPITOPE
identified 130 promiscuous candidate T cell epitope sequences
(bottom bar), which represent a manageable amount of data for
subsequent laboratory testing. The top and middle bars of the
histogram show an estimate of the number of peptides
corresponding to the gene/protein sequences analyzed.
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Identification of T-cell epitopes by expression profiling combined with predictive algorithms.

A: Expression profiling using Affymetrix GeneChip arrays indicates overexpression of c-myc in colorectal
tumors and liver metastases. B: The epitope scanning procedure is outlined using c-myc as an example. The
HLA binding affinities of peptides in a sliding window along the length of the protein sequence are

predicted using a virtual matrix-based algorithm.

currently available epitope prediction models
are based on HLA peptide binding data. This
approximation is supported by the observation
that HLA peptide binding is a major bottleneck
in the selection of epitopes, as indicated by the
finding that most peptide sequences lack the
capacity to interact with HLA molecules.
Several approaches have been developed for
HLA-based epitope prediction, reflecting both
the different characteristics of peptide interac-
tion with HLA-I and HLA-II, and the increasing
structural and functional information that
has become available over the past decade
[Raddrizzani and Hammer, 2000]. An effective
HLA-II epitope prediction tool is TEPITOPE,
which is based on so-called quantitative matri-
ces [Sturniolo et al., 1999] (Fig. 7). Quantitative
matrices provide very detailed models in which
the contribution to binding of each amino acid at
each position within a binding core of a peptide
is quantified. The position-specific amino acid
values reflect the structural properties of

HLA alleles, therefore constituting a “finger-
print” of HLA binding domains. Quantitative
matrix-based prediction systems are linear
models that are easy to implement and that
result in a binding score for each query peptide.

Matrix-based prediction models have been
validated for HLA-II in several retrospective
studies (Fig. 8A). Furthermore, they have been
successfully applied to predict T-cell epitopes in
the context of oncology, allergy, and autoim-
mune diseases [Gross et al., 1998; de Lallaet al.,
1999; Manici et al., 1999; Cochlovius et al., 2000;
Stassar et al., 2001]. By starting with micro-
array data rather than whole genome sequence
data, the number of possible tumor antigens can
be reduced to a manageable number that can,
in turn, be experimentally tested as part of a
tumor vaccine development program (Figs. 8B
and 9).

As these examples illustrate, there is tremen-
dous potential for using large-scale gene
expression data in the drug discovery process.
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These new approaches to drug discovery have
come about because the technical hurdles to
genome-scale sequencing and high-throughput
expression monitoring have been largely over-
come. The next challenge is to increase the
speed at which relevant functional information
can be obtained for genes of interest, and
eventually for every gene in the genome. As
expression profiling methods continue to gain in
sensitivity, genome coverage, and speed, the
pressure for developing high-throughput func-
tional genomics methods will only increase.
As functional genomics technologies improve,
they will continue to transform the drug dis-
covery process by completing the process of
rapidly moving from sequence to expression
pattern to protein function.
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